Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article | IMSEAR | ID: sea-200561

ABSTRACT

Toxic epidermal necrolysis (TEN) is a rare life-threatening adverse drug reaction associated with mucocutaneous eruptions and peeling of skin (sloughing) mostly caused by drugs like sulphonamides, beta lactams, carbamazepine and non-steroidal anti-inflammatory drugs (NSAIDs). Amoxicillin is a broad spectrum, bactericidal, Beta-lactam antibiotic used in treatment of various infections. Here by we have reported the case of amoxicillin induced severe toxic epidermal necrolysis. A Patient admitted in the hospital with the symptoms of epidermal sloughing that resulted in bare dermis as he received Amoxicillin drug for his diagnosis of fever. After clear examination TEN was confirmed and suspected with the cause due to Amoxicillin. The drug was stopped and patient was treated with other drugs for symptomatic cure. The patient was recovered from his condition and improved significantly.

2.
Indian J Biochem Biophys ; 2007 Oct; 44(5): 379-85
Article in English | IMSEAR | ID: sea-26744

ABSTRACT

Filariasis is a major health problem, affecting millions of people in tropical and sub-tropical regions of the world. The isolation and characterization of parasite-specific enzyme targets is essential for developing effective control measures against filariasis. Acetylcholinesterase (AchE, E.C. 3.1.1.7), an important enzyme of neuromuscular transmission is found in a number of helminths including filarial parasites and may be playing a role in host-parasite interactions. Earlier, we demonstrated the presence of two isozymes of AchE, different from the host enzyme in the human (Brugia malayi) and bovine (Setaria cervi) filarial parasites. In the present study, two isozymes of AchE (pAchE1 and pAchE2) were isolated from S. cervi adults and characterized biochemically and immunochemically. The AchE was partially purified on Con-A Sepharose column and then subjected to preparative polyacrylamide gel electrophoresis (PAGE) for separation of the isozymes. The AchE activity was localized by the staining of gel and the isozymes were isolated from the PAGE strips by electroelution. Both isozymes preferentially utilized acetylcholine iodide as substrate and were strongly inhibited by the true AchE inhibitor (BW284c51), suggesting that they were true AchE. The polyclonal antibodies produced against the isozymes showed significant cross-reactivity with B. malayi AchE, but not against the host enzyme. These findings suggested that both the isozymes were biochemically (in terms of their substrate specificity and inhibitor sensitivity) and immunochemically similar, but different from the host enzyme.


Subject(s)
Acetylcholinesterase/chemistry , Animals , Buffaloes/parasitology , Enzyme Activation , Enzyme Stability , Female , Host-Parasite Interactions/immunology , Isoenzymes/chemistry , Male , Setaria Nematode/enzymology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL